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Abstract

Background: Despite the heterogeneity of type 2 diabetes (T2D), all patients are

treated according to the same guideline. Some people have more difficulty reaching

treatment goals (adequate glycaemic control) and maintaining quality of life (QoL).

Therefore, a prediction model identifying who is unlikely to reach these goals within

the next year would be useful to allow specific attention to these people.

Aim: To investigate if machine learning algorithms can predict which individuals are

unlikely to reach glycaemic control and likely to deteriorate in QoL in 1 year.

Methods: We used data from The Maastricht Study, including 842 people with T2D

and information on HbA1c values, and 964 people with T2D and information on QoL.

We evaluated several machine learning algorithms with feature selection methods
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Janssen-Cilag B.V.; Novo Nordisk Farma B.V.;

Sanofi-Aventis Netherlands B.V. and hyperparameter tuning in fivefold cross-validation for the corresponding

outcomes.

Results: The prediction of inadequate glycaemic control showed good performance.

The support vector machine classifier performed best in terms of accuracy (0.76 (95%

CI 0.71–0.79)), precision (0.79 (95% CI 0.71–0.83)) and area under the receiver oper-

ating characteristic curve (AUC-ROC) (0.85 (95% CI 0.80–0.89)). The multi-layer per-

ceptron classifier performed best in terms of recall (0.72 (95% CI 0.64–0.79)) and

F1-score (0.73 (95% CI 0.64–0.79)). The prediction of deterioration in QoL showed

inadequate performance and did not seem feasible.

Conclusion: Prediction of glycaemic control after 1 year in T2D is feasible with good

model performance. However, the prediction of deterioration in QoL remains a chal-

lenge and needs further work.
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1 | INTRODUCTION

There are roughly half a billion people living with type 2 diabetes

(T2D) globally, presenting with a wide range of profiles and disease

characteristics of this highly heterogeneous disease.1 Although there

are many differences in metabolic profiles and disease severity, most

individuals are treated according to standardised guidelines. Providing

each patient with standard care despite their differences may stand in

the way of reaching treatment goals. It would be valuable if we could

predict who is going to have trouble reaching treatment goals.

From a clinical point of view, the treatment goal is to reach ade-

quate glycaemic control, defined as a glycated haemoglobin A1c

(HbA1c) level of less than 53 mmol/mol.2 The tools used to reach this

goal are initially lifestyle advice, followed by the prescription of

glucose-lowering drugs. Different drug classes are used in different

disease stages as defined by national treatment guidelines, and the

effect on HbA1c values differs per drug class.3,4 Reaching adequate

glycaemic control is important as high HbA1c levels have been associ-

ated with various comorbidities and mortality.5 However, a patient's

own perspective on life is important too and can be evaluated looking

at quality of life (QoL) measures through different validated question-

naires. QoL is important in diabetes as people with diabetes report a

lower QoL compared to those without.6,7 Additionally, there is an

intricate relationship between diabetes, mental health8 and QoL.9 This

network of bidirectional interactions creates a risk for a patient to

enter a cycle in which diabetes worsens QoL and mental health, which

in turn can cause an increase in diabetes severity.10 Therefore, pre-

venting deterioration in QoL might not only improve the patient's

experience, but also clinical parameters.

Machine learning has been used before in predicting HbA1c, but

mostly based on blood glucose levels in type 1 diabetes.11,12 Addition-

ally, a data-driven approach has been adopted to predict glycaemic

control trajectories over 6 years in Finland13 and other authors have

created a prediction model for glycaemic control in 6 months using

wearable devices.14 However, to our knowledge, no prediction model

has been adopted for predicting how likely a T2D patient is to have

adequate glycaemic control within a year from now, without having to

use wearable or follow-up data. Prediction algorithms for QoL have

been used in some other diseases,15–17 but not yet for diabetes. Being

able to predict which individual with diabetes will be likely to have

inadequate glycaemic control, or to experience deterioration in QoL in

the next year, would allow clinicians to prioritise patient monitoring

and implement strategies to avert these negative outcomes.

Therefore, in the current study, we aimed to investigate if

machine learning algorithms can be used to predict which T2D indi-

viduals are likely not to reach treatment goals in terms of glycaemic

control and QoL.

2 | METHODS

2.1 | Data source

We used data from The Maastricht Study, an observational, prospec-

tive, population-based cohort study. The rationale and methodology

have been described previously.18 In brief, the study focuses on the

aetiology, pathophysiology, complications and comorbidities of T2D

and is characterised by an extensive phenotyping approach. Eligible

for participation were all aged between 40 and 75 years and living in

the southern part of the Netherlands. Participants were recruited

through mass media campaigns and from the municipal registries and

the regional Diabetes Patient Registry via mailings. Recruitment was

stratified according to known T2DM status, with an oversampling of

individuals with T2DM, for reasons of efficiency. The present study

includes cross-sectional data from the first 9187 participants, who

were included in the baseline survey between November 2010 and

October 2020. The examinations of each participant were performed

within a time window of 3 months after the baseline visit. The study

has the approval of the institutional medical ethics committee

(NL31329.068.10) and the Dutch Ministry of Health, Welfare and
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Sport (Permit 131 088-105 234-PG). All participants gave their writ-

ten informed consent.

The current study is part of the HTx Project, which is a Horizon

2020 project supported by the European Union that lasted for 5 years

from January 2019. The main aim of HTx is to create a framework for

the Next Generation Health Technology Assessment (HTA) to support

patient-centred, societally oriented, real-time decision-making on access

to and reimbursement for health technologies throughout Europe.

2.2 | Study population

From The Maastricht Study dataset, we selected all people with T2D

based on the oral glucose tolerance test performed during their first

(baseline) visit to the study centre or use of glucose-lowering drug

based on World Health Organization (WHO) definition.19 T2D was

defined by a fasting glucose ≥7.0 mmol/L and 2 h post-load glucose

≥11.1 mmol/L, or the use of glucose-lowering drugs and the absence

of a type 1 diabetes diagnosis. From the people with T2D, we selected

those who used glucose-lowering drugs at baseline. For the prediction

of glycaemic control, we selected individuals with no missing baseline

glycated haemoglobin A1c (HbA1c) measurement (baseline visit) and a

follow-up measurement available at 365 ± 120 days after baseline

(hospital records). This population will be referred to as ‘population
GLUC’. For the prediction of QoL, we selected individuals with T2D

and glucose-lowering drug use, and no missing values in the short

form 36 (SF-36) data at baseline and follow-up questionnaire 1, com-

pleted 1 year after baseline. This population will be referred to as

‘population QoL’. In both populations, there were no users of sodium-

glucose cotransporter 2 inhibitors or glucagon-like peptide 1 receptor

agonists.

2.3 | Features

A wide range of features from the Maastricht Study were used in this

study. These features are listed in short below and additional informa-

tion can be found in Table S1. All these features were measured at

baseline.

1. General: Sex, age

2. Socio-economic: education level, income

3. Lifestyle: Dutch healthy diet (DHD) score, alcohol use, smoking

4. Fitness: sedentary wake minutes per day, sedentary bouts, per-

centage of moderate to vigorous activity of wake time, maximum

power output at bicycle test (W/kg)

5. Diabetes-related: diabetes duration, HbA1c, body mass

index (BMI)

6. Questionnaires: EQ-5D, SF-36, Big5

7. Comorbidities: depression, anxiety, albuminuria, impaired renal

function, cardiovascular diseases

8. Laboratory values: high-density lipoprotein (HDL), low-density

lipoprotein (LDL), triglycerides, systolic blood pressure (SBP) and

diastolic blood pressure (DBP)

9. Drug use: number of different glucose-lowering drug classes used,

biguanides, sulphonylureas, DPP4-Is, insulin, other glucose-

lowering drugs and sleep medication/hypnotic drugs.

2.4 | Outcomes

The outcomes to be predicted in this study were glycaemic control

and deterioration in QoL. Inadequate glycaemic control was

defined as an HbA1c level of 53 mmol/mol or higher at

365 ± 120 days after baseline.2 Follow-up HbA1c measurements

were available from routine care through linkage with hospital data.

In the case of multiple measurements, the HbA1c value closest to

365 days after baseline was selected. HbA1c measurements were,

into adequate and inadequate glycaemic control. Deterioration in

QoL was defined as a reduction of 3 points6,20 in the SF-36 score

in the online questionnaire at follow-up 1 compared to baseline,

according to the SF-36 manual's definition of a relevant difference

in score. QoL follow-up 1 took place 1 year after the baseline visit.

The SF-36 produces a mental component summary (MCS) score

and a physical component summary (PCS) score, which were used

as separate outcomes and referred to as mental QoL and physical

QoL, respectively.

2.5 | Pre-processing and machine learning

After selection of the study population and definition of the features,

all features with more than 30% missing values were removed. Subse-

quently, we evaluated the Pearson correlation matrix and removed

features with a Pearson correlation coefficient of more than 0.6.

Data were analysed using Python v3.10.9 and scikit-learn v1.2.1.

We applied several supervised machine learning prediction algorithms

to predict the outcomes, that is, to classify patients according to the

two values of the binary outcome. We selected a diverse set of widely

used and well-validated machine learning algorithms to ensure a com-

prehensive evaluation across different methodological families, includ-

ing tree-based, instance-based, probabilistic, kernel-based and neural

network approaches. These algorithms have been extensively applied

in biomedical and clinical research, demonstrating solid performance

across various prediction tasks. Their inclusion enables comparison

under different modelling assumptions and supports the identification

of robust solutions for clinical decision-making. The prediction algo-

rithms used in this study are: Decision Tree classifier (DT), Random

Forest classifier (RF), K-Nearest Neighbour classifier (KNN), Gaussian

Naïve Bayes (GNB), Support Vector classifier (SVC) and Multi-Layer

Perceptron classifier (MLP). All methods applied are supervised algo-

rithms, meaning that we provide the model with the true outcome

values to predict.

Additionally, we applied a logistic regression (LR) to assess how a

regression model would perform compared to machine learning algo-

rithms. LR has historically been one of the most widely used models

for binary classification in medicine, making it a solid benchmark for

comparing the performance of more complex models. It allows

WERKMAN ET AL. 3
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assessing whether the use of more sophisticated models provides a

real improvement over a well-established approach.21 Detailed infor-

mation on the algorithms used is provided in Data S2.

In order to find the optimal set of features for prediction, we

applied three widely used different feature selection methods: Recur-

sive Feature Elimination (RFE), meta-transformer selecting features

based on importance (SelectFromModel (SFM)) and forward sequential

feature selection (SFS). RFE attempts to select the optimal feature set

based on the learned model and classification accuracy. It removes the

worst feature that causes a drop in accuracy after building the model

and does so recursively until the prespecified number of features is

reached.22 SFM is a meta-transformer selecting features with higher

importance than the threshold value as indicated by the model on the

training set.23 Forward SF is a greedy procedure finding the best fea-

ture to add to the model. It iteratively finds the next best feature to

add until the prespecified number of features is reached.24 Detailed

information on the feature selection methods is provided in Data S2.

We evaluated each of the prediction algorithms (default setting)

with each of the feature selection methods in fivefold cross-

validation, setting the number of characteristics to select to 20. In

each of the folds of the cross-validations, missing values in features

were imputed (using the scikit-learn function IterativeImputer),

numeric features were scaled (using the scikit-learn function Stan-

dardScaler) and categorical features were coded (using the scikit-learn

function OneHotEncoder).

Since each feature selection method is based on different

assumptions and selection strategies, it is well known that they often

produce partially overlapping but not identical sets of features. These

differences are intrinsic to the different methodologies and are not

necessarily a weakness, but rather a reflection of the complexity and

multidimensionality of biomedical data.

Therefore, this work employed a combination of the results from

multiple feature selection techniques in an ensemble strategy, the aim

being to identify features that demonstrate consistent importance across

methods, increasing the robustness and generalisability of the selected

subset. Specifically, features retained by at least 50% of the folds in each

method were included in the final feature set. This voting-based strategy

reduces the reliance on a single selection method and mitigates the

biases inherent in each approach, thus favouring a more stable and reli-

able feature space for subsequent predictive modelling.

The 50% threshold in our ensemble feature selection strategy

was chosen as a balance between sensitivity and specificity in

retaining relevant features.25–28 This threshold ensures that only con-

sistently selected features are retained in at least half of the cross-

validation folds within each selection method, thus filtering out spuri-

ous or unstable variables that might arise due to sampling variability

or model-specific bias. This final ensemble feature set was applied to

all prediction algorithms.

Finally, we performed a second analysis with hyperparameter tun-

ing on the three algorithms with the best results from the previous

analysis to find the best combination and evaluate its impact on the

models' performance. This analysis was done in conjunction with RFE

feature selection.

2.6 | Evaluation

The models were evaluated by fivefold cross-validation, using a pipe-

line including variable transformation, imputation, feature selection

and hyperparameter selection when applicable.

The final models were scored using accuracy, precision, recall,

F1-score and the area under the receiver operating characteristic

curve (AUC-ROC). All scoring parameters range from 0 to 1, with

1 being a perfect score. Both the mean and the 95% confidence

interval (CI) were calculated. The scoring parameters are based on

the number of true positive (TP), false positive (FP), true negative

(TN) and false negative (FN) individuals, in which positive refers to

the label “1” and negative refers to the label “0”. True refers to cor-

rectly classified individuals and false to incorrectly classified

individuals.

Accuracy represents the number of correctly classified people

over the total number of people: Accuracy¼ TNþTP
TNþFPþTPþFN.

Precision represents the number of correctly classified positives

over the total number of predicted positives: Precision¼ TP
TPþFP. Recall

represents the number of correctly classified positives over the num-

ber of actual positives:

Recall¼ TP
TPþFN. The F1-score is a harmonic mean of precision

and recall, only high when both precision and recall are

high: F1� score¼2� Precision�Recall
PrecsionþRecall .

The receiver operating characteristic (ROC) curve is composed by

plotting the model's true positive rate (TPR) versus its false positive

rate (FPR) across all possible classification thresholds. TPR is the prob-

ability that a positive value is correctly predicted as positive, whereas

the FPR is the probability that a negative value is correctly predicted

as negative. The AUC-ROC is a summary statistic representing the

probability that the model will rank a randomly chosen positive value

more highly than a randomly chosen negative value, in which ‘higher’
means further towards positivity.

3 | RESULTS

3.1 | Study population

Figure 1 shows the selection of people with diabetes and glucose-

lowering drug use into two groups of people: one with no missing

values at baseline and follow-up HbA1c (N = 842, population GLUC)

and one with no missing values at baseline and follow-up SF-36

(N = 964, population QoL). The baseline characteristics of both

groups are shown in Table 1. The mean age in both populations was

around 63 years old and almost half of the people had a low education

level. The mean diabetes duration was over 9 years in both popula-

tions, although with a substantial standard deviation (SD). In

population GLUC for the prediction of glycaemic control (Table 1),

baseline HbA1c was slightly elevated (mean: 54 mmol/mol) and

43.2% of individuals had inadequate glycaemic control at baseline.

After 1 year, the mean HbA1c had increased slightly to 54.4 mmol/

mol and 46.4% of the individuals had inadequate glycaemic control. In

4 WERKMAN ET AL.
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population QoL for the prediction of deterioration in QoL (Table 1),

the mean mental- and physical QoL scores at baseline were 53.1 and

46.9, respectively, and 10.9% reported their health to be worse com-

pared to 12 months ago. One year after baseline, there was a mean

reduction in both mental QoL (�1.0) and physical QoL (�1.8) scores,

and 29.3% and 34.3% of the individuals had reported a deterioration

in these scores, respectively.

3.2 | Feature selection

Features with more than 30% missing values (homeostatic model

assessment of insulin resistance and beta-cell function, glomerular fil-

tration rate and percentage liver fat) were excluded. We excluded

weight, height and waist circumference due to correlation with BMI

and total cholesterol due to correlation with LDL and HDL. The other

features did not show high correlation. Table 2 provides an overview

of the features selected for each prediction model and each feature

selection method in the first analysis. The following features were

selected by at least 50% of the folds for the prediction of inadequate

glycaemic control (population GLUC) and were therefore included in

the final ensemble feature set: sex, age, income, diet score, baseline

HbA1c, depression, anxiety, albumin excretion, renal function, use of

sleep medication and the use of biguanides, sulphonylurea, insulin or

other glucose-lowering drugs. Baseline HbA1c was selected in 100%

of the folds and the use of sleep medication in 74.4% of the folds. The

other features included were selected in 50.0%–66.7% of the folds,

with most features relating to comorbidities or drug use.

The following features were selected for the prediction of deteri-

oration in physical QoL (population QoL): diet score, EQ5D score,

baseline mental QoL, baseline physical QoL, Big5 conscientiousness,

depression, unhealthy LDL, triglycerides, DBP and use of sleep medi-

cation. The following features were selected for the prediction of

deterioration in mental QoL (population QoL): age, income, baseline

physical QoL, baseline mental QoL, Big5 emotional stability, depres-

sion, renal function, triglycerides, DBP and insulin use. In these two

models, baseline mental QoL and physical QoL were chosen in most

folds. The other features included were selected in 50.0%–65.6% and

54.4%–71.1% of the folds for the mental QoL and physical QoL

model, respectively. Most features included in the models related to

questionnaires or laboratory values.

The feature selection in the second analysis with hyperparameter

tuning is detailed below and the overview of the features selected is

included in Table S3.

In the prediction of glycaemic control (population GLUC), the fol-

lowing features were selected both for GNB (tuned hyperparameters:

var_smoothing = 0.53), MLP (tuned hyperparameters: activa-

tion = tanh, alpha = 0.05, hidden_layer_sizes = (50,100,50), learnin-

g_rate = adaptive, max_iter = 30, solver = adam) and SVC (tuned

hyperparameters: C = 10, gamma = 0.01, kernel = sigmoid): moderate

to vigorous physical activity (MVPA) of wake time, sedentary bouts,

years since T2D diagnosis, diet score, triglycerides, BMI, baseline

MCS, baseline PCS and baseline HbA1c. Additionally, age (GNB, SVC)

and sedentary wake minutes (MLP, SVC) were selected by two

models. Finally, SBP, DBP, Big 5 extraversion and insulin use were

selected only in the SVC algorithm.

In the prediction of deterioration in physical QoL (population

QoL), the following features were selected for both GNB (tuned

hyperparameters: var_smoothing = 1), MLP (tuned hyperparameters:

activation = relu, alpha = 0.05, hidden_layer_sizes = (50,50,50), learnin-

g_rate = constant, max_iter = 30, solver = adam) and SVC (tuned

hyperparameters: C = 1, gamma = 0.0001, kernel = sigmoid): MVPA

of wake time, sedentary bouts, sedentary wake minutes, diet score,

triglycerides, BMI, DBP, baseline MCS, baseline PCS, Big 5 conscien-

tiousness. Additionally, age, years since T2D diagnosis, SBP, Big

5 extraversion and Big 5 openness were selected by both MLP and

Popula�on available
N = 9,188

People with T2D
N = 2,004

People with baseline 
glucose-lowering drug use

N = 1,438

Population GLUC
People with baseline and 

follow-up HbA1c
N = 842

Population QoL
People with baseline and 

follow-up SF-36
N = 964

Missing SF-36
N = 474

Missing HbA1c
N = 596

No baseline drug use
N = 566

No T2D
N = 7,184

F IGURE 1 Flowchart showing the
selection of people with T2D and baseline
drug use into two groups of people with
no missing values in outcome parameters
in the baseline and follow-up outcomes
(Population GLUC and QoL). Overlap was
allowed in the final two populations (bold
boxes) in order to maximise the number
of people. HbA1c, glycated haemoglobin
1Ac; SF-36, short form 36; T2D, type
2 diabetes.
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TABLE 1 Baseline characteristics and output values of the population used in the prediction of glycaemic control (Population GLUC) and in
the prediction of deterioration in QoL (Population QoL). Data are given in n (%) unless specified otherwise.

Population GLUC Population QoL

N (%) Missing (%) N (%) Missing (%)

Number of people 842 n/a 964 n/a

General

Number of women 252 (29.9) 0 (0.0) 275 (28.5) 0 (0.0)

Age, mean (SD) 63.3 (7.5) 0 (0.0) 63.1 (7.5) 0 (0.0)

Socio-economic

Low education level 409 (49.9) 23 (2.7) 448 (46.9) 8 (0.8)

Income lower than median 575 (68.3) 0 (0.0) 625 (64.8) 0 (0.0)

Lifestyle

Diet score [0–100], mean (SD) 79.9 (14.6) 72 (8.6) 80.1 (14.7) 44 (4.6)

High alcohol consumption 128 (15.5) 16 (1.9) 157 (16.3) <5 (0.1)

Current smoker 156 (18.9) 16 (1.9) 163 (16.9) <5 (0.2)

Fitness

Sedentary wake minutes per day, mean (SD) 607.1 (109.5) 138 (16.4) 602.7 (106.0) 154 (15.9)

Number of sedentary bouts, mean (SD) 318.4 (112.0) 138 (16.4) 319.8 (111.4) 154 (15.9)

Percentage MVPA of wake time, mean (SD) 4.2 (2.5) 138 (16.4) 4.4 (2.5) 154 (15.9)

Wmax in lowest tertile 380 (61.5) 224 (26.6) 459 (61.2) 214 (22.2)

Diabetes-related

Years since T2D diagnosis, mean (SD) 9.7 (7.6) 210 (24.9) 9.3 (7.6) 237 (24.6)

HbA1c at baseline in mmol/mol, mean (SD) 54.0 (11.8) <5 (0.1) 53.1 (11.3) <5 (0.1)

Inadequate glycaemic control at baseline 364 (43.2) 0 (0.0) n/a

BMI in kg/m2, mean (SD) 30.0 (4.9) <5 (0.2) 29.9 (5.0) <5 (0.1)

Questionnaire

EQ-5D 3L score [�0.330–1.000], mean (SD) 0.8 (0.2) 33 (3.9) 0.9 (0.2) <5 (0.3)

EQ-5D health score [0–100], mean (SD) 69.8 (21.0) 32 (3.8) 71.1 (20.4) <5 (0.3)

EQ-5D health worse than 12 months ago 94 (11.6) 34 (4.0) 105 (10.9) <5 (0.3)

SF-36 MCS, mean (SD) 53.0 (8.7) 35 (4.2) 53.1 (8.5) 0 (0.0)

SF-36 PCS, mean (SD) 45.8 (10.3) 35 (4.2) 46.9 (9.6) 0 (0.0)

Big5 extraversion, mean (SD) 4.8 (1.2) 154 (18.3) 4.9 (1.2) 146 (15.2)

Big5 conscientiousness, mean (SD) 5.2 (1.0) 154 (18.3) 5.2 (1.0) 146 (15.2)

Big5 agreeableness, mean (SD) 5.6 (0.8) 153 (18.2) 5.6 (0.8) 145 (15.0)

Big5 emotional stability, mean (SD) 4.9 (1.1) 153 (18.2) 5.0 (1.1) 145 (15.0)

Big5 openness, mean (SD) 4.6 (1.1) 154 (18.3) 4.6 (1.1) 146 (15.2)

Comorbidities

Depression 43 (5.5) 57 (6.8) 48 (5.3) 53 (5.5)

Anxiety 45 (6.2) 116 (13.8) 43 (5.1) 118 (12.2)

Abnormal albumin excretion 186 (22.5) 17 (2.0) 205 (21.4) 8 (0.8)

Impaired renal function 364 (43.2) 0 (0.0) 48 (5.0) 0 (0.0)

Cardiovascular disease 277 (32.9) 0 (0.0) 286 (29.7) 0 (0.0)

Laboratory values

HDL <1 mmol/L 96 (11.4) 0 (0.0) 95 (9.9) 0 (0.0)

LDL >3 mmol/L 112 (13.3) 0 (0.0) 132 (13.7) 0 (0.0)

Triglycerides in mmol/L, mean (SD) 1.7 (1.1) 0 (0.0) 1.7 (1.1) 0 (0.0)

SBP in mmHg, mean (SD) 142.0 (17.7) 0 (0.0) 141.4 (17.5) <5 (0.1)

DBP in mmHg, mean (SD) 76.3 (9.6) 0 (0.0) 76.4 (9.4) <5 (0.1)
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SVC. Finally, Big 5 agreeableness and Big 5 emotional stability, EQ5D

health Score, EQ5D 3 L score and baseline HbA1c were selected only

in the SVC algorithm.

In the prediction of deterioration in mental QoL (population QoL),

the following features were selected for both GNB (tuned hyperpara-

meters: var_smoothing = 0.81), MLP (tuned hyperparameters:

activation = tanh, alpha = 0.0001, hidden_layer_sizes = (120,80,40),

learning_rate = constant, max_iter = 30, solver = adam) and SVC

(tuned hyperparameters: C = 0.1, gamma = 0.001, kernel = sigmoid):

MVPA of wake time, sedentary wake minutes, diet score, triglycerides,

BMI, SBP, baseline MCS, baseline PCS, baseline HbA1c and Big 5 con-

scientiousness. Additionally, sedentary bouts, age, Big 5 extraversion,

Big 5 emotional stability and Big 5 openness were selected by both

MLP and SVC. Finally, years since T2D diagnosis, DBP, Big 5 agree-

ableness, EQ5D health score and EQ5D 3 L score were selected only

in the SVC algorithm.

3.3 | Model performance

Table 3 provides an overview of the model performance per outcome

and per prediction algorithm used with the ensemble feature set. In

the model to predict glycaemic control, SVC performed best in terms

of accuracy (0.76), precision (0.79) and AUC-ROC. However, MLP per-

formed best in terms of recall (0.72) and F1-score (0.73) and had

slightly lower accuracy (0.75) and precision (0.74) scores, as well as a

slightly lower AUC-ROC (0.83). Generally, SVC and MLP were the

better performing models compared to DT, RF, KNN and GNB. LR

performed similarly to SVC, but with slightly lower precision and

recall.

Model performance was lower in the prediction of deteriora-

tion in QoL, with accuracy ranging from 0.61 to 0.71 for mental

QoL, and 0.58–0.67 for physical QoL. Precision scores ranged from

0.33 to 0.57 for mental QoL and 0.38–0.57 for physical QoL. Recall

and F1-score were generally low, with most models not scoring

over 0.30 for both parameters. These ranges do not include SVC

for mental QoL, since this algorithm classified all cases as negative

(i.e., no deterioration), leading to a precision, recall and F1-score of

0. AUC-ROC ranged between 0.53 and 0.64 for mental QoL and

0.54–0.63 for physical QoL. LR generally yielded the best accuracy,

precision and AUC-ROC, whereas DT yielded higher recall and

F1-scores.

Table 4 provides the results of the performance of the models

with hyperparameter tuning for the three best performing models

in the previous analysis. The classifiers included were GNB, SVC

and MLP. The AUC-ROCs obtained for glycaemic control were

0.77, 0.83 and 0.83, respectively. For deterioration in physical QoL,

the scores were 0.59, 0.58 and 0.57, respectively. For deterioration

in mental QoL, the scores were 0.59, 0.61 and 0.58, respectively.

The SVC for mental and physical QoL classified all cases as negative

(i.e., no deterioration), leading to a precision, recall and F1-score

of 0.

TABLE 1 (Continued)

Population GLUC Population QoL

N (%) Missing (%) N (%) Missing (%)

History of drug use

Sleep medication or hypnotics 23 (2.7) 0 (0.0) 24 (2.5) 0 (0.0)

Number of glucose-lowering drug classes 1.8 (0.8) 0 (0.0) 1.7 (0.8) 0 (0.0)

Biguanide 763 (90.6) 0 (0.0) 881 (91.4) 0 (0.0)

Sulphonylurea 315 (37.4) 0 (0.0) 348 (36.1) 0 (0.0)

DPP4-I 90 (10.7) 0 (0.0) 123 (12.8) 0 (0.0)

Other 61 (7.2) 0 (0.0) 255 (26.5) 0 (0.0)

Insulin 267 (31.7) 0 (0.0) 65 (6.7) 0 (0.0)

Output (after 1 year)

HbA1c in mmol/mol, mean (SD) 54.4 (12.4) 0 (0.0) n/a

Inadequate glycaemic control 391 (46.4) 0 (0.0) n/a

Difference in MCS, mean (SD) n/a �1.0 (8.4) 0 (0.0)

Deterioration in MCS n/a 282 (29.3) 0 (0.0)

Difference in PCS, mean (SD) n/a �1.8 (7.8) 0 (0.0)

Deterioration in PCS n/a 331 (34.3) 0 (0.0)

Note: Elaborate feature definitions can be found in Table S1.

Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; DPP4-I, dipeptidyl peptidase 4 inhibitor; HbA1c, glycated haemoglobin A1c; HDL,

high-density lipoprotein; LDL, low-density lipoprotein; MCS, mental component summary (‘mental QoL’); MVPA, moderate to vigorous physical activity; N,

number; PCS, physical component summary (‘physical QoL’); QoL, quality of life; SBP, systolic blood pressure; SD, standard deviation; SF, short form; T2D,

type 2 diabetes.
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TABLE 2 Features selected in the different methods for the prediction of glycaemic control, deterioration in mental QoL (MCS) and
deterioration in physical QoL (PCS). Green boxes show the total percentages over 50.0, that is, the features chosen for the final model.

Glycaemic control Deterioration in MCS Deterioration in PCS

RFE SFM SFS Total RFE SFM SFS Total RFE SFM SFS Total

General

Number of women 70.0 33.3 76.7 60.0 50.0 0.0 33.3 27.8 40.0 0.0 23.3 21.1

Age 90.0 66.7 33.3 63.3 63.3 46.7 70.0 60.0 46.7 40.0 60.0 48.9

Socio-economic

Low education level 26.7 13.3 33.3 24.4 50.0 33.3 13.3 32.2 66.7 33.3 20.0 40.0

Income lower than median 46.7 26.7 80.0 51.1 50.0 63.3 36.7 50.0 6.7 0.0 23.3 10.0

Lifestyle

Diet score 66.7 46.7 63.3 58.9 36.7 26.7 66.7 43.3 73.3 60.0 63.3 65.6

High alcohol consumption 26.7 16.7 53.3 32.2 46.7 33.3 26.7 35.6 40.0 16.7 26.7 27.8

Current smoker 23.3 13.3 60.0 32.2 43.3 16.7 16.7 25.6 0.0 0.0 33.3 11.1

Fitness

Sedentary wake minutes per day 50.0 20.0 26.7 32.2 40.0 33.3 73.3 48.9 33.3 26.7 66.7 42.2

Number of sedentary bouts 50.0 26.7 50.0 42.2 33.3 33.3 70.0 45.6 43.3 30.0 66.7 46.7

Percentage MVPA of wake time 60.0 40.0 46.7 48.9 40.0 26.7 63.3 43.3 36.7 33.3 70.0 46.7

Wmax in lowest tertile 3.3 0.0 63.3 22.2 40.0 30.0 26.7 32.2 63.3 46.7 20.0 43.3

Diabetes-related

Years since T2D diagnosis 33.3 16.7 43.3 31.1 46.7 36.7 60.0 47.8 56.7 26.7 63.3 48.9

Baseline HbA1c in mmol/mol 100.0 100.0 100.0 100.0 53.3 36.7 56.7 48.9 40.0 30.0 50.0 40.0

BMI in kg/m2 43.3 20.0 30.0 31.1 43.3 30.0 66.7 46.7 50.0 33.3 60.0 47.8

Questionnaire

EQ5D 3L score 26.7 26.7 36.7 30.0 40.0 26.7 60.0 42.2 80.0 46.7 73.3 66.7

EQ5D health score (0–100) 30.0 10.0 50.0 30.0 33.3 20.0 63.3 38.9 33.3 23.3 60.0 38.9

EQ5D health worse than 12 months ago 60.0 20.0 60.0 46.7 50.0 20.0 40.0 36.7 10.0 13.3 40.0 21.1

SF-36 PCS 40.0 26.7 23.3 30.0 96.7 100.0 70.0 88.9 100.0 86.7 73.3 86.7

SF-36 MCS 30.0 30.0 26.7 28.9 96.7 100.0 73.3 90.0 100.0 90.0 63.3 84.4

Big5 extraversion 46.7 0.0 40.0 28.9 40.0 23.3 73.3 45.6 36.7 23.3 70.0 43.3

Big5 conscientiousness 73.3 30.0 16.7 40.0 50.0 33.3 60.0 47.8 86.7 40.0 70.0 65.6

Big5 agreeableness 33.3 10.0 56.7 33.3 56.7 23.3 63.3 47.8 36.7 16.7 63.3 38.9

Big5 emotional stability 46.7 13.3 53.3 37.8 76.7 53.3 66.7 65.6 40.0 26.7 63.3 43.3

Big5 openness 46.7 20.0 33.3 33.3 33.3 30.0 66.7 43.3 46.7 23.3 66.7 45.6

Comorbidities

Depression 53.3 53.3 63.3 56.7 53.3 60.0 50.0 54.4 66.7 66.7 50.0 61.1

Anxiety 60.0 50.0 86.7 65.6 30.0 6.7 26.7 21.1 43.3 36.7 33.3 37.8

Abnormal albumin excretion 60.0 46.7 50.0 52.2 26.7 3.3 26.7 18.9 43.3 40.0 23.3 35.6

Impaired renal function 70.0 60.0 46.7 58.9 70.0 63.3 20.0 51.1 23.3 10.0 36.7 23.3

Cardiovascular disease 13.3 0.0 43.3 18.9 26.7 3.3 30.0 20.0 73.3 56.7 16.7 48.9

Laboratory values

HDL <1 mmol/L 23.3 3.3 70.0 32.2 36.7 40.0 36.7 37.8 26.7 3.3 40.0 23.3

LDL >3 mmol/L 26.7 13.3 46.7 28.9 26.7 10.0 30.0 22.2 76.7 56.7 30.0 54.4

Triglycerides in mmol/L 83.3 20.0 16.7 40.0 66.7 36.7 66.7 56.7 63.3 46.7 63.3 57.8

SBP in mmHg 40.0 13.3 26.7 26.7 50.0 30.0 63.3 47.8 43.3 30.0 70.0 47.8

DBP in mmHg 73.3 33.3 40.0 48.9 63.3 30.0 73.3 55.6 80.0 63.3 70.0 71.1

Drug use

Sleep medication or hypnotics 66.7 66.7 90.0 74.4 30.0 3.3 26.7 20.0 66.7 66.7 46.7 60.0
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4 | DISCUSSION

In this study, we used various machine learning algorithms and LR to

predict being under inadequate glycaemic control and experiencing

deterioration in mental or physical QoL scores, all 1 year after baseline.

We observed good performance of some models for predicting glycae-

mic control, but prediction of the deterioration in mental or physical

QoL score does not perform well under the conditions described. LR

performed similarly to the best performing machine learning algorithm

in the prediction of both glycaemic control and deterioration in QoL.

TABLE 2 (Continued)

Glycaemic control Deterioration in MCS Deterioration in PCS

RFE SFM SFS Total RFE SFM SFS Total RFE SFM SFS Total

Number of glucose-lowering drug classes 3.3 6.7 23.3 11.1 46.7 40.0 30.0 38.9 0.0 0.0 30.0 10.0

Biguanide 66.7 80.0 53.3 66.7 33.3 13.3 23.3 23.3 53.3 40.0 40.0 44.4

Sulphonylurea 73.3 53.3 46.7 57.8 36.7 33.3 33.3 34.4 66.7 53.3 20.0 46.7

DPP4-I 26.7 23.3 53.3 34.4 56.7 26.7 26.7 36.7 40.0 13.3 36.7 30.0

Insulin 76.7 43.3 30.0 50.0 63.3 66.7 43.3 57.8 16.7 3.3 26.7 15.6

Other 60.0 53.3 56.7 56.7 23.3 0.0 33.3 18.9 46.7 30.0 40.0 38.9

Note: Elaborate feature definitions can be found in Table S1.

Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; DPP4-I, dipeptidyl peptidase 4 inhibitor; HbA1c, glycated haemoglobin A1c; HDL,

high-density lipoprotein; LDL, low-density lipoprotein; MCS, mental component summary; MVPA, moderate to vigorous physical activity; PCS, physical

component summary; RFE, recursive feature elimination; SBP, systolic blood pressure; SF, short form; SFM, select from model; SFS, sequential feature

selection; T2D, type 2 diabetes.

TABLE 3 Scoring of the final models with the ensemble feature set. Data are given in score (95% CI).

Accuracy Precision Recall F1-score AUC-ROC

Glycaemic control

DT 0.68 (0.66–0.71) 0.68 (0.65–0.70) 0.60 (0.49–0.70) 0.63 (0.58–0.69) 0.69 (0.67–0.73)

RF 0.67 (0.65–0.69) 0.74 (0.71–0.79) 0.55 (0.35–0.54) 0.55 (0.48–0.62) 0.69 (0.63–0.73)

KNN 0.67 (0.63–0.72) 0.68 (0.61–0.72) 0.58 (0.49–0.68) 0.62 (0.58–0.69) 0.62 (0.58–0.69)

GNB 0.69 (0.62–0.76) 0.72 (0.61–0.81) 0.55 (0.49–0.63) 0.62 (0.55–0.70) 0.76 (0.69–0.84)

SVC 0.76 (0.71–0.79) 0.79 (0.71–0.83) 0.67 (0.60–0.72) 0.72 (0.68–0.76) 0.85 (0.80–0.89)

MLP 0.75 (0.72–0.79) 0.74 (0.69–0.77) 0.72 (0.64–0.79) 0.73 (0.64–0.79) 0.83 (0.78–0.88)

LR 0.76 (0.71–0.79) 0.78 (0.71–0.84) 0.66 (0.61–0.70) 0.72 (0.68–0.75) 0.85 (0.80–0.89)

Deterioration of mental QOL

DT 0.61 (0.60–0.63) 0.33 (0.30–0.36) 0.33 (0.27–0.37) 0.33 (0.38–0.36) 0.53 (0.50–0.56)

RF 0.67 (0.66–0.70) 0.36 (0.32–0.46) 0.15 (0.12–0.18) 0.21 (0.18–0.24) 0.57 (0.56–0.59)

KNN 0.68 (0.67–0.70) 0.43 (0.39–0.48) 0.23 (0.19–0.27) 0.29 (0.26–0.33) 0.56 (0.52–0.60)

GNB 0.67 (0.64–0.71) 0.39 (0.34–0.49) 0.18 (0.09–0.26) 0.24 (0.15–0.30) 0.61 (0.59–0.65)

SVC 0.71 (0.70–0.71) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.61 (0.59–0.63)

MLP 0.68 (0.66–0.71) 0.43 (0.36–0.53) 0.20 (0.14–0.024) 0.27 (0.23–0.31) 0.59 (0.55–0.63)

LR 0.71 (0.69–0.73) 0.57 (0.40–0.74) 0.15 (0.11–0.18) 0.23 (0.19–0.27) 0.64 (0.59–0.69)

Deterioration of physical QOL

DT 0.58 (0.51–0.54) 0.38 (0.30–0.47) 0.38 (0.30–0.47) 0.38 (0.31–0.49) 0.54 (0.47–0.62)

RF 0.64 (0.60–0.67) 0.46 (0.33–0.53) 0.20 (0.16–0.24) 0.28 (0.21–0.32) 0.55 (0.50–0.60)

KNN 0.64 (0.62–0.66) 0.45 (0.40–0.50) 0.26 (0.21–0.31) 0.33 (0.28–0.38) 0.58 (0.53–0.62)

GNB 0.64 (0.60–0.67) 0.44 (0.34–0.52) 0.19 (0.14–0.27) 0.26 (0.21–0.35) 0.62 (0.56–0.65)

SVC 0.66 (0.64–0.67) 0.24 (0.00–0.92) 0.01 (0.00–0.03) 0.02 (0.00–0.06) 0.63 (0.56–0.70)

MLP 0.65 (0.64–0.66) 0.49 (0.46–0.51) 0.29 (0.23–0.36) 0.36 (0.31–0.42) 0.62 (0.58–0.63)

LR 0.67 (0.63–0.70) 0.57 (0.41–0.81) 0.16 (0.12–0.19) 0.24 (0.19–0.29) 0.63 (0.59–0.69)

Abbreviations: DT, decision tree classifier; GNB, Gaussian Naïve Bayes; KNN, K-nearest neighbour classifier; LR, logistic regression; MLP, multi-layer

perceptron classifier; RF, random forest classifier; SVC, support vector classifier.
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4.1 | Features selected

The ensemble feature selection allowed us to reduce the model from

42 features to 14, 10 and 10 features for the prediction of glycaemic

control, deterioration in mental QoL and deterioration in physical

QoL, respectively. As expected, the baseline values of the outcomes

were selected as predictors in all models. HbA1c was even selected in

100% of the feature selection folds. Mental QoL was selected

in 90.0% of the folds and physical QoL in 86.7% of the folds in their

respective feature selection models.

In the model for the prediction of glycaemic control, most

selected features were comorbidities or categories of drug use. This is

in accordance with previous reports where depression,10 anxiety,29

albuminuria30,31 and renal disease31 have been associated with gly-

caemic control. Sex and age have been known to have a relationship

with glycaemic control as well,32,33 and so does having a low

income.34 Although adherence to the Dutch Healthy Diet index has

only been associated with a decrease in BMI rather than improved

glycaemic control,35 diet has been associated with glycaemic control

before.36 All glucose-lowering drug classes have been selected for the

model except for DPP4-I use. Given that drug classes influence

HbA1c levels to varying degrees,4 it is a logical result that each of

them is an important predictor. The class of DPP4-Is was not selected,

possibly due to the low number of people using this drug at baseline,

leading to limited information provided by this drug class compared to

the other drug classes.

In the prediction models for the deterioration of physical and

mental QoL, greater instability was observed in terms of the

selected variables with greater variability within the folds of the

different cross-validations. It does make sense that baseline mental

and physical QoL were selected for their models, and that the

EQ5D 3 L score was also chosen in two-thirds of the folds. Inter-

estingly, the mean EQ-5D 3 L score was quite high at 0.9

considering the maximum score of 1.000, whereas the total health

score of 71.1 was rather low compared to a mean value of 82.0

reported in Dutch community-dwelling elderly.37 Baseline mental

and physical QoL were similar to those reported previously in this

population,7 but lower compared to the scores reported in people

without diabetes.6 Although 10.9% indicated that they had experi-

enced a decline in health over the past year at baseline, 29.3%

(mental QoL) and 34.3% (physical QoL) reported a deterioration in

QoL a year after that. These contradictive patterns show that there

must be an intricate network of pathways underlying the change in

QoL, not to mention the subjectiveness of these measures. This

makes it difficult to incorporate these networks into a well-

performing prediction model.

4.2 | Interpreting model performance

Generally, an AUC form 0.70 to 0.80 is considered acceptable, 0.80 to

0.90 is excellent, and over 0.90 is outstanding.38 This definition

implies that for the first analysis with the ensemble feature set, the

SVC, MLP and LR were excellent in predicting glycaemic control and

that GNB was acceptable in doing so. In practice, it would be impor-

tant to identify as many people who are likely not to reach glycaemic

control as possible in order to monitor those people closely and limit

disease progression. In other words, we are interested in a model that

maximises the number of TPs and minimises the number of FPs and

FNs, so performance in terms of F1-score is also important. Again, the

three algorithms that obtain good values in terms of F1-score above

0.70 are SVC, MLP and LR, with MLP slightly above. In the second

analysis with hyperparameter tuning, very similar results are obtained,

with the SVC and MLP algorithms obtaining excellent results above

0.80 in terms of AUC-ROC and good results above 0.70 in terms of

F1-score.

TABLE 4 Scoring of the final models with hyperparameter tuning. Data are given in score (95%CI).

Accuracy Precision Recall F1-score AUC-ROC

Glycaemic control

GNB 0.70 (0.68–0.73) 0.82 (0.75–0.88) 0.47 (0.41–0.54) 0.59 (0.54–0.64) 0.77 (0.74–0.81)

SVC 0.75 (0.73–0.77) 0.79 (0.75–0.82) 0.64 (0.59–0.69) 0.70 (0.67–0.73) 0.83 (0.80–0.87)

MLP 0.76 (0.74–0.78) 0.78 (0.75–0.80) 0.68 (0.64–0.72) 0.72 (0.70–0.75) 0.83 (0.80–0.85)

Deterioration of mental QOL

GNB 0.70 (0.69–0.71) 0.47 (0.22–0.72) 0.04 (0.02–0.05) 0.06 (0.04–0.09) 0.59 (0.55–0.63)

SVC 0.71 (0.71–0.71) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.61 (0.58–0.65)

MLP 0.70 (0.69–0.71) 0.45 (0.39–0.51) 0.17 (0.11–0.22) 0.24 (0.18–0.30) 0.58 (0.55–0.62)

Deterioration of physical QOL

GNB 0.65 (0.64–0.66) 0.42 (0.13–0.70) 0.02 (0.01–0.03) 0.05 (0.03–0.07) 0.59 (0.53–0.64)

SVC 0.66 (0.65–0.66) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.58 (0.55–0.61)

MLP 0.63 (0.61–0.65) 0.43 (0.37–0.48) 0.26 (0.21–0.30) 0.32 (0.27–0.37) 0.57 (0.55–0.60)

Abbreviations: GNB, Gaussian Naïve Bayes; MLP, multi-layer perceptron classifier; SVC, support vector classifier.

10 WERKMAN ET AL.

 14631326, 0, D
ow

nloaded from
 https://dom

-pubs.onlinelibrary.w
iley.com

/doi/10.1111/dom
.16598 by yaser A

dam
 , W

iley O
nline L

ibrary on [20/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Regarding the prediction of QoL, similar results were obtained in

both analyses. The mental and physical QoL models did not reach an

acceptable AUC-ROC, always below 0.65, as well as an F1-score

below 0.40.

4.3 | Comparison with other models

The number of prediction models similar to the ones we attempted to

create in the current study is limited. Patel et al.14 used various tech-

niques to predict glycaemic control after 6 months in 147 people with

prediabetes. The ensemble machine learning method performed best,

and predictions improved using (wrist-worn) wearable data. The AUC-

ROC was 0.85 (95%CI 0.79–0.90), which is similar to our SVC and LR

models. No other scoring parameters were reported.

A Finnish study13 reported a prediction model for HbA1c trajec-

tories over 6 years, based on 9631 individuals with T2D. The trajecto-

ries were grouped into adequate and inadequate glycaemic control,

and the final neural network model gave correct predictions for 86.6%

of the individuals with inadequate glycaemic control, which is higher

than what we obtained in our 1-year prediction model. This is possibly

due to our use of less advanced models, different features and a smal-

ler dataset.

Fan et al.39 studied a large range of prediction models in

165 non-adherent people with T2D. The Bayesian network reached

the highest AUC-ROC of 0.82. This model score is slightly lower than

the score of our best performing model.

Fu et al.40 created a prediction model for glycaemic control after

52 weeks with BMI, pulse and several biochemical blood measure-

ments. The XGBoost algorithm performed best with an AUC-ROC of

0.68, which is lower compared to our models. The differences in the

definition of glycaemic control (cut-off of 48 mmol/mol), as well as

the use of various biochemical blood measurements and different pre-

diction algorithms, could explain these results.

Overall, these model scores for the prediction of HbA1c do not

perform excellently (AUC-ROC over 0.9), showing that accurate pre-

diction remains a challenge. This could be due to the intricate path-

ways involved in glycaemic control,41 as well as limitations in data

availability and follow-up measurements.

The prediction of QoL remains a challenge. To our knowledge,

there is no literature available on prediction models for QoL in diabe-

tes. In different diseases and settings, prediction models for QoL have

been created using the SF-36 like we did,15 EQ-5D42 or disease-

specific QoL scales.16,17 The work of Khan et al.15 obtained an AUC-

ROC of 0.77 for mental QoL improvement and 0.78 for physical QoL

improvement 1 year after surgery for mild degenerative cervical mye-

lopathy. In contrast to our work, this model predicts an improvement

in QoL (defined as an increase of at least 4 points on the SF-36). Fur-

thermore, the study population was small and no cross-validation was

performed.

The work of de Jonge et al.42 obtained an R2 of 0.52 using EQ-5D

for QoL in patients 1 year after intensive care admission.

Although the sample in this work is larger and more robustly evalu-

ated by cross-validation, the prediction target is continuous, so a

direct comparison between the results obtained is not possible. The

works of Candel-Parra et al.16 and Karri et al.17 obtained an AUC-

ROC of 0.80–0.90 in disease-specific scales for Parkinson's and can-

cer disease after 1 year respectively. These works used disease-

specific scales with threshold cut-off values different from those used

in our work, as well as small patient samples complicating the robust-

ness and generalisability of the results. Moreover, several of these

papers make no mention of the treatment of missing data15,16 or per-

form simple imputation with the mean,42 contrary to recommenda-

tions to use more advanced imputation techniques for bias reduction.

All these results emphasise the need for further work in the field of

QoL prediction, as well as in the design and use of disease-specific

scales and in the use of larger samples of patients.

4.4 | Strengths and limitations

The strengths of this study include the wide range of features

explored as well as the feature selection techniques employed to

select the most important features. The sample of patients used,

although not large for a machine learning study, is one of the largest

used in the literature of QoL prediction. Data on drug use were com-

plete and accurate due to the use of longitudinal pharmacy records.

Moreover, we used advanced imputation techniques to handle miss-

ing data instead of analysing only complete cases or using simpler

imputation techniques. In addition, we used different scoring parame-

ters to obtain information on how well the models performed in terms

of classifying positives and negatives correctly, obtaining a more com-

plete and objective view of the real performance of the models.

However, there are some limitations to keep in mind. The use of

a solely Dutch population could limit the external validity of the

model, despite extensive cross-validation. Additionally, we excluded

individuals with no glucose-lowering drug use (both populations) and

those with no hospital records of HbA1c measurements (Population

GLUC) which further limits the external validity. The large difference

in insulin use between Population GLUC and Population QoL shows

that there are mostly people with advanced diabetes in Population

GLUC. Additionally, the use of newer glucose-lowering drug classes is

underrepresented in the current population. Although our population

is larger than in most of the studies described in the previous para-

graph, this larger population sample has not resulted in better model

performance. This might also be due to the limited follow-up time, as

insufficient QoL follow-up was available beyond 1 year. The Maas-

tricht Study does not measure the diabetes-specific QoL scale,43 so

we were unable to use a disease-specific scale for the prediction of

deterioration in QoL. We had no information on some features previ-

ously associated with QoL, such as acceptance,44 knowledge44 and

executive functioning.45 The use of more sophisticated prediction

algorithms remains open to further exploration for possible improve-

ments of the results.
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4.5 | Clinical implications

The current study not only presents a prediction model with potential

clinical applications; it also provides insight into the features of impor-

tance in the prediction of inadequate glycaemic control and deteriora-

tion in QoL.

The implementation of a prediction model in practice would allow

a clinician to evaluate newly diagnosed type 2 diabetes patients using

a computerised assessment tool. By inputting the patient's profile, the

system would generate a risk stratification for inadequate glycaemic

control and/or QoL deterioration. If the model anticipates these

adverse outcomes, the clinician could initiate a more rigorous follow-

up protocol, incorporating enhanced monitoring and treatment inten-

sification where necessary in order to prevent these outcomes from

manifesting.

While awaiting further development into clinical implementation

of this predictive model, the current study provides insight into the

features of importance for these predictions. Our findings suggest

that the presence of depression, anxiety, albuminuria and renal dis-

ease, along with low income and baseline HbA1c levels, are important

characteristics for preliminary risk assessment regarding future inade-

quate glycaemic control. Risk factors for future deterioration in QoL

are to be elucidated, as only baseline QoL demonstrated consistent

significance across various algorithms tested.

While the current study focuses on the development and valida-

tion of predictive models, future work could benefit from the integra-

tion of explainability methods, such as SHapley Additive exPlanations

(SHAP). These techniques can provide additional insights into model

behaviour by highlighting the contribution of individual variables to

specific predictions, thereby enhancing transparency and supporting

clinical interpretability. Incorporating such approaches would further

strengthen the robustness and practical applicability of the models in

real-world clinical settings.

4.6 | Next steps and future research

The next steps in predicting glycaemic control include further

research in different populations to assess the external validity of the

model and its transferability. A final model could be adapted for use in

clinical practice. Such a model would require the input of readily avail-

able patient characteristics and would output whether the patient is

likely to experience inadequate glycaemic control within a year. This

information could help target therapy and concentrate care on those

people likely to suffer from inadequate glycaemic control. The adapta-

tion of such a model for a deterioration in QoL in people with T2D

remains a challenge, since the results of the models developed in this

work would not allow for their use in clinical practice. Further

research in the prediction of QoL in T2D should focus on models able

to find the intricate pathways and potential subjectivity of this type of

outcome. Perhaps the use of the Diabetes Specific Quality of Life

Scale43 would perform better for this goal. If the heterogeneity of

T2D is indeed the cause of the ill-performing models for the

prediction of QoL, a possible strategy would be to use the previously

defined novel subgroups of T2D.7,46 Using these subgroups might

allow algorithms to find the patterns to use in prediction, rather than

having to look for patterns in the highly heterogeneous total popula-

tion of people with diabetes.

5 | CONCLUSIONS

The results of the current study show that prediction of inadequate

glycaemic control after 1 year in T2D is feasible, in particular with

SVC and MLP algorithms. Good results have been obtained in terms

of discriminability with excellent AUC-ROCs and good F1-score met-

rics. A model using LR performed similarly to these two machine

learning algorithms. Ensemble feature selection yielded better predic-

tion results than using a single feature selection technique followed

by hyperparameter fitting. Prediction of deterioration in QoL after

1 year was not feasible in the current population under the conditions

used. Therefore, further research is required to elucidate the intricate

network of pathways leading to changes in QoL in T2D.
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